Simetría Central:
Dos puntos P y P’ son simétricos respecto del centro de simetría O cuando O es el punto medio del segmento.
La simetría respecto de un punto se llama simetría central y los puntos correspondientes, homólogos. En una simetría central, los segmentos homólogos son iguales y la medida de los ángulos correspondientes también son iguales.
Ejemplo 1:
Dibuja el triángulo simétrico respecto del centro O del triángulo dado ABC.
Cualquier punto cumple las dos siguientes condiciones:
A y A’ están alineados: la recta que los une pasa por O.
La distancia de O al punto A es igual que la de O al transformado A’
Estos triángulos son simétricos respecto del centro O.
Para pasar de un punto a su simétrico se cambia el signo de las coordenadas:
Si P =(x,y) entonces P’=(-x,-y).
Coordenadas de los puntos
Coordenadas de sus simétricos
A=(3, 1)
A=(-3, -1)
B=(1, 2)
B=(-1, -2)
C=(2, -1)
C=(-1, 2)
Dos puntos P=(x,y) y P’=(x’,y’) simétricos respecto de origen de coordenadas tienen sus abscisas y ordenadas opuestas.
Las ecuaciones de la simetría central son:
No hay comentarios:
Publicar un comentario